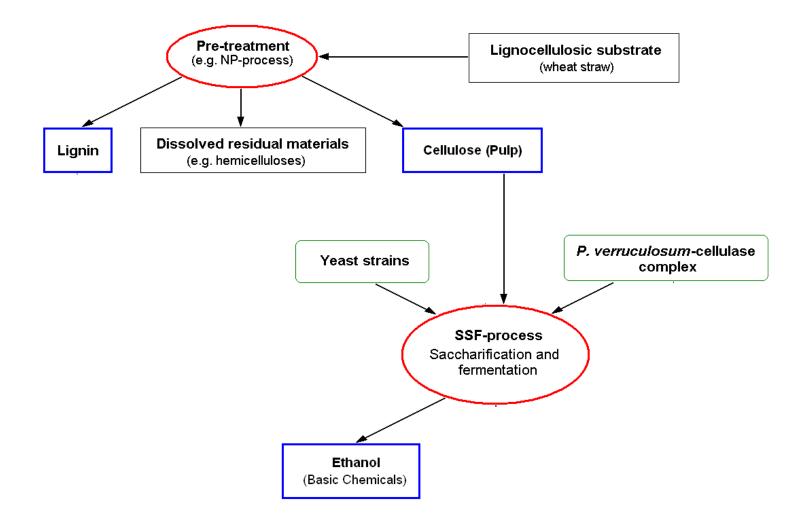

The SSF process of ethanol production from pulp from wheat straw

ERA-IB-project EIB.10.013:



"Development of a process for the utilization both the carbohydrate and the lignin content from lignocellulosic materials of annual plants for the production of valuable products"

SIAB Overall process for the utilization of wheat straw

SIAB SSF-process of ethanol production from pulp

SSF-process from the technical point of view

Advantage of SSF-process	Requirements
Reduction and simplification of the process stepsLower investment costs	 Stability of the cellulase complex in the SSF process during the entire fermentation period
 Overall simplified process execution when the cellulase complex is produced on the basis of the lignocellulosic substrates in the ethanol plant 	 Less inhibition of the cellulase complex by ethanol and by- products of the lignocellulose- pre-treatment such as lignin
	 Optimal supply of the required amount of pulp in the fermentation process taking into account the high intrinsic viscosity of pulp suspension
	 Yeast strains, stable to by- products of the pre-treatment process

SIAB

SIAB The following main tasks are studied:

Pre-treatment of wheat straw

- Investigation on different properties of the pulp depending on the method for pre-treatment
- Investigation on different properties of the lignin depending on the method for pre-treatment

Penicillium verruculosum cellulase-complex

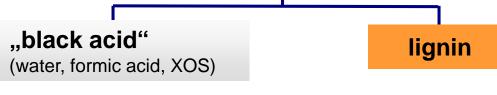
- Production of the P. v.-cellulase using substrates of the pre-treatment process
- Saccharification of pulp
- Inhibition by lignin and ethanol

SSF-process

- Influence of pre-treatment on yield of ethanol
- Stability of the cellulase in the SSF-process
- Supply of the required amount of pulp by pre-hydrolysis, fedbatch feeding and SSF-process in solid-state-fermentation

Pre-treatment of lignocellulose

- Alkaline pre-treatment with NaOH
- Natural Pulping pre-treatment with formic acid / H₂O₂
- Autohydrolysis



Scale-up of **alkaline pre-treatment** at Fraunhofer Center for Chemical-Biotechnological Processes CBP, Leuna

- 1. Charging the digester
- 2. Pulping procedure
- 3. Separation of pulp
- 4. Lignin precipitation
- 5. Lignin separation

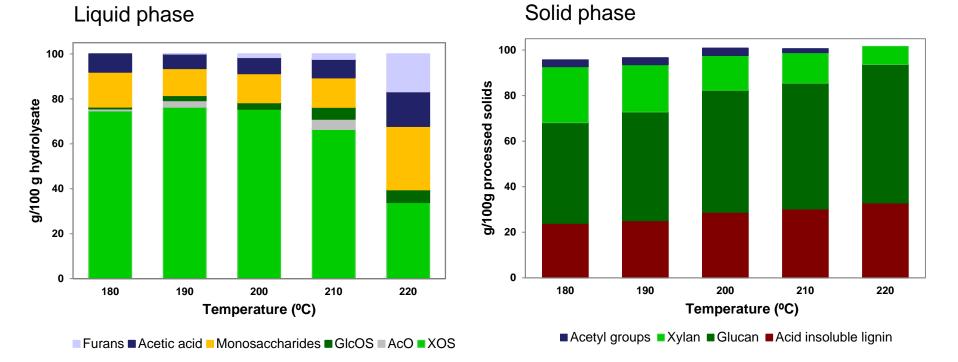
Natural pulping of wheat straw SIAB wheat straw pulping with formic acid and H_2O_2 separation, washing black liquor pulp distillation of formic acid

residue

precipitation with water pH=1,5

formic acid

Scale-up of Natural Pulping pre-treatment


- 600-L Reactor (enameled)
- Agitation: 1 impeller
- Including distillation-unit

Lab-scale (SIAB)

Pilot-scale

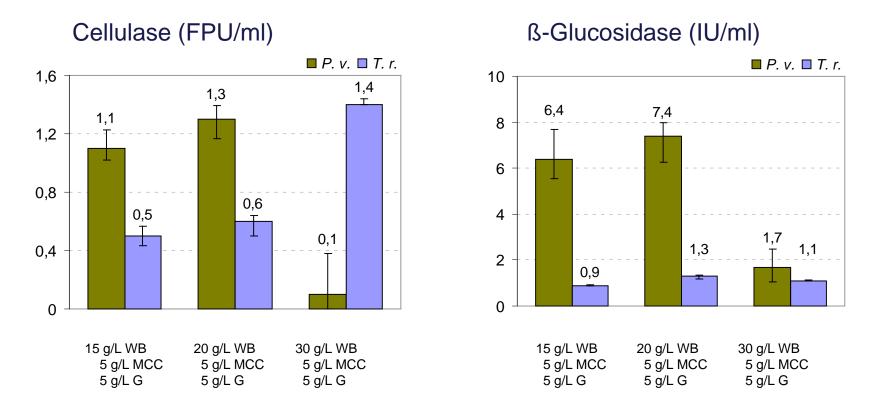
(Lanxess Deutschland GmbH, Group Function Innovation and Technology)

Optimization of xylo-oligosaccharides production

- Autohydrolysis is highly selective towards hemicellulose enabling a high recovery of xylo-oligosaccharides (XOS)
 - An important glucan and lignin enrichment of the solid phase was possible making the solids very attractive for further processing (*i.e.* enzymatic saccharification)

Influence of pre-treatment on properties of pulp and lignin

Analytic of pulp:	 Intrinsic viscosity Determination of crystallinity by X-ray diffractometry Scanning electron microscopy Composition of pulp; lignin, cellulose and holocellulose content Xylo-oligosaccharides at autohydrolysis
Analytic of lignin:	 Influence of pulping duration / liquid ratio Influence of formic acid concentration (NP) Influence of NaOH-concentr. (alkaline p.) Functional groups IR-spectroscopy Molecular weight Klason lignin


Comparison of all pre-treatments

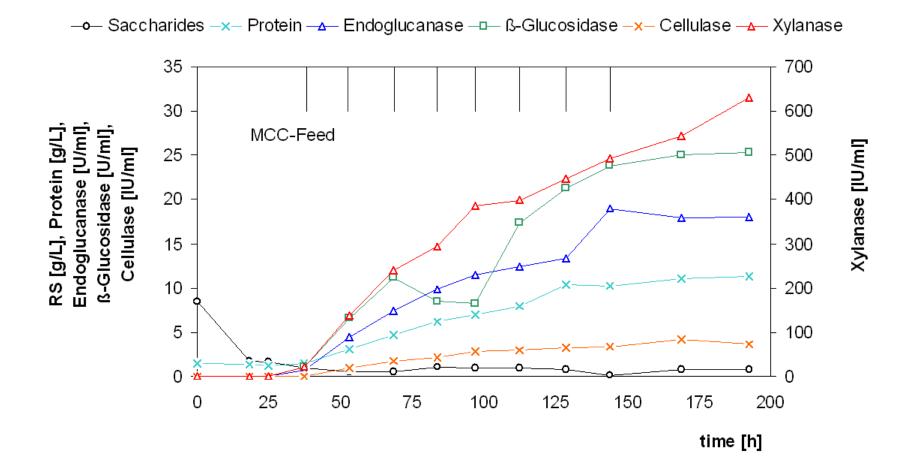
Pre-treatment	Advantage	Disadvantage
Natural Pulping Liquor ratio 1:14	 Recovery of formic acid High purity of lignin Non-pressurised process Pulp has a lower intrinsic viscosity 	 High content of lignin in pulp Low solid content (1:14!) Corrosion protection (e.g. enameled steel)
Alkaline Pulping Liquor ratio 1:6	 Low lignin content in pulp High technological readiness 	 Recovery of sodium hydroxide Pressure of 6 bar
Auto-hydrolysis Liquor ratio 1:8	 No chemicals needed Recovery of hemicellulose 	 High energy consumption Pressure of 20-25 bar

Penicillium verruculosum enzyme complex

Production of the *P. verruculosum* cellulase

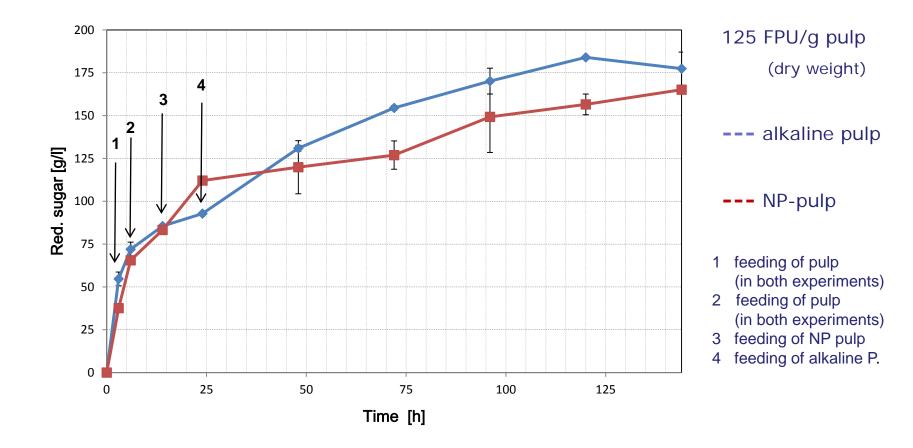
10th Bioethanol and Bioconversion Technology Meeting, Detmold 2014

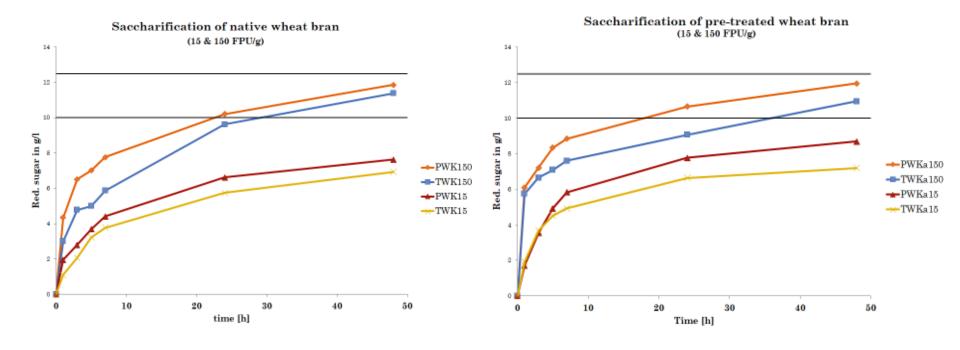
Production of cellulase based on wheat bran, glucose and MCC as substrate (lab-scale in shake flask)


from the Bachelor-Thesis Denise Lachmann, 2013

Production of cellulase from P. verruculosum M28-10

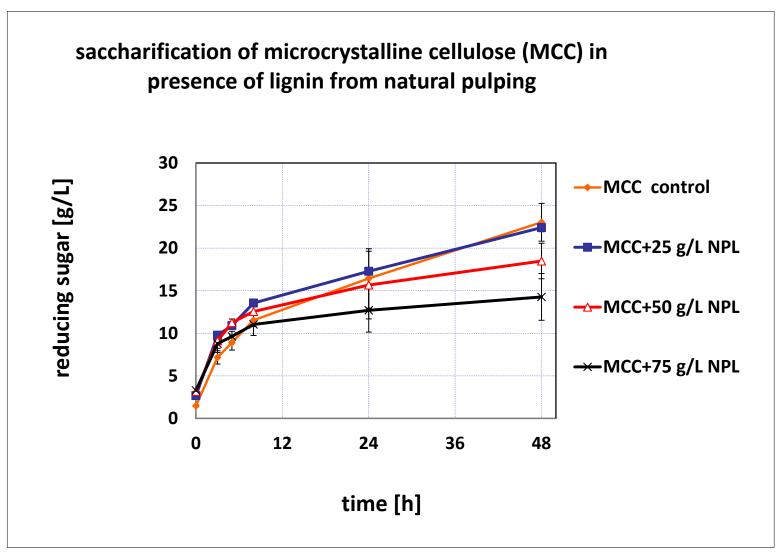
- 600L Bioreactor
- VF = 400L
- Agitation: Rushton (x3)
- Aeration 0,2-0,8 vvm (air)
- Medium composition: glucose, wheat bran, MCC
- fed-batch technique:
 feeding of MCC


Fermentation of P. verruculosum - course of enzyme activity

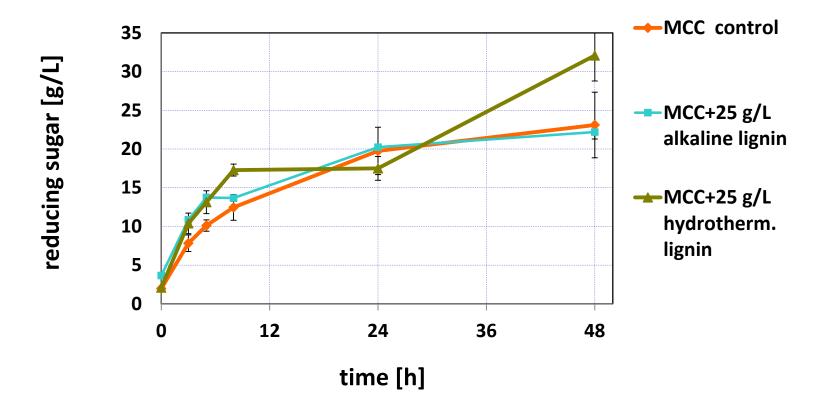

Saccharification of pulp by *P. verruculosum* cellulase

Enzymatic saccharification of NP- and alkaline pulp: Feeding of pulp in fed-batch technique

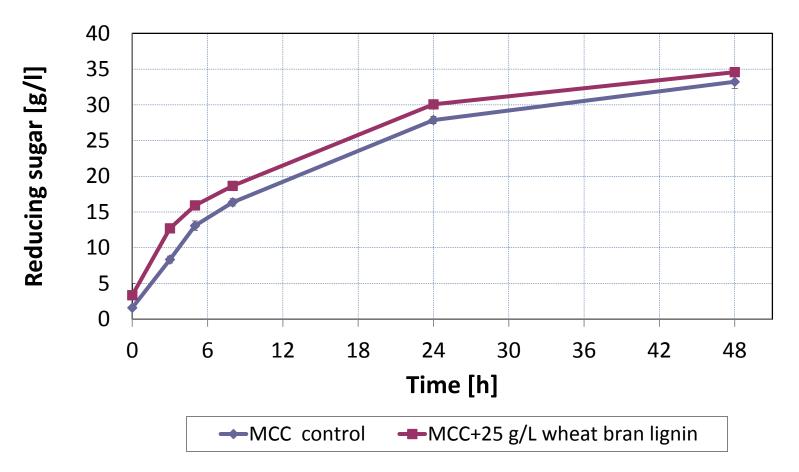
SIAB


Comparison between *T. reesei-* and *P. verruculosum-*cellulase in hydrolysis of untreated and pre-treated wheat bran

from the Bachelor-Thesis Robert Koksch, 2012


Inhibition of *P. verruculosum* cellulase by lignin and ethanol

Study on inhibition of *P. verruculosum* cellulase by NP-lignin



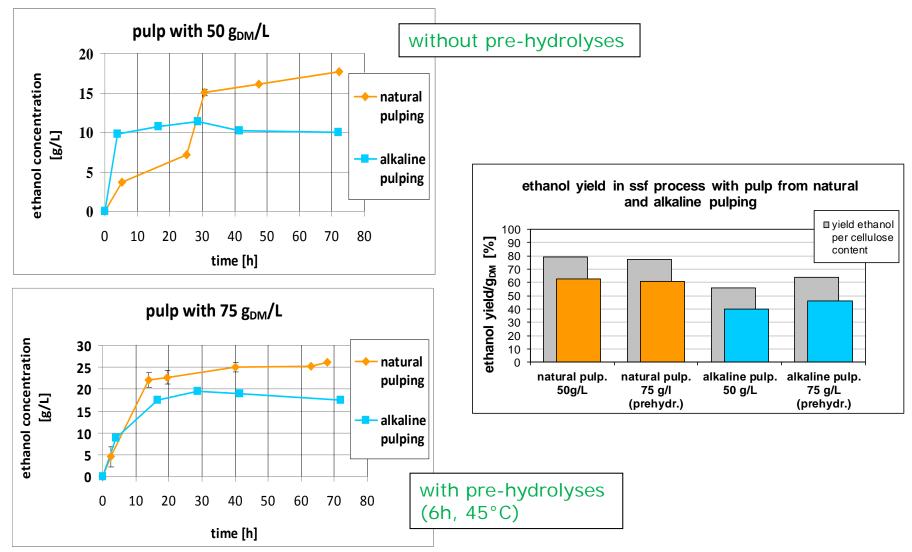
Study on inhibition of *P. verruculosum* cellulase by lignin from alkaline and hydrothermal treatments

saccharification of microcrystalline cellulose (MCC) in presence of lignin from alkaline and hydrothermal pulping

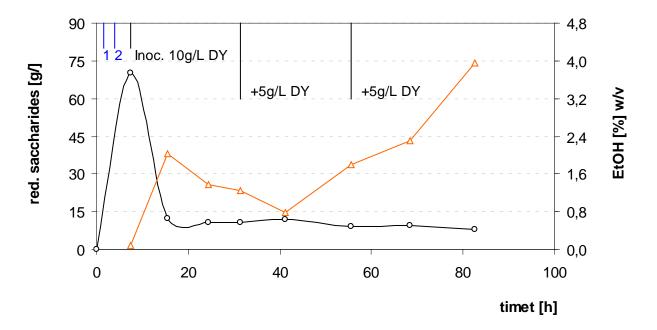
Saccharification of MCC by *P. verruculosum* cellulase in presence of lignin from wheat bran by Natural Pulping (FPU= 50 U/g_{DM}; substrate 50 g/L_{DM} MCC)

SIAB

Investigations on the SSF-process


10th Bioethanol and Bioconversion Technology Meeting, Detmold 2014

Investigations in 3-L-bioreactor Experimental setup - process parameters


Working volume	1,700 ml
FPU/g _{DM}	50
Yeast inoculum (dry yeast, ZFT)	5 g/L
pulp content (g/L) -natural pulping -alkaline pulping	50 - 75 75 - 100
NH ₄ CI	2 g
KH ₂ PO ₄	1 g
рН	5
temperature	35°C
trial time	~ 72 h
pre-hydrolysis (45°C)	6 h/8h

Comparison of SSF between pulp from natural and alkaline pulping

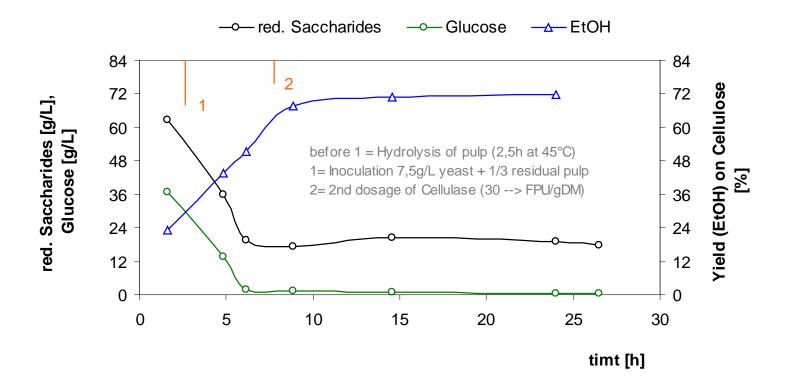
SIAB SSF process with feeding of yeast in fed batch

 $-\infty$ red. saccharides $-\infty$ EtOH 1, 2 = Dosage pulp + 2x50g/L (7h hydrolysis, 45°C)

- 5L stirred bioreactor, VF = 2L, 200g/L pulp (natural pulping), 30FPU/gDM

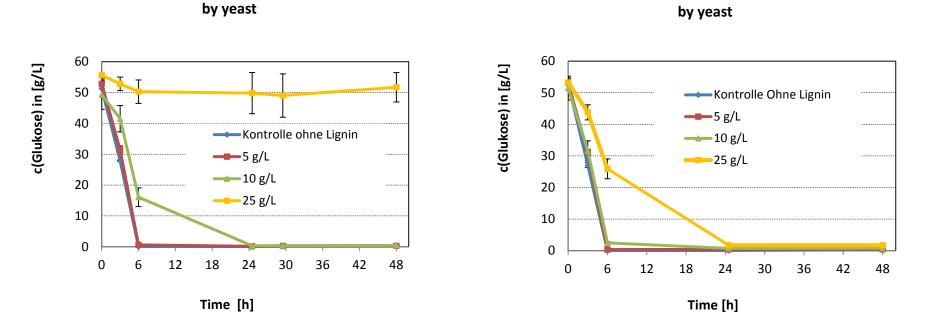
- EtOH-conc. = 4% (w/v) after 72h
- EtOH-yield = 35% (Pulp), 44% (Cellulose)
- Pulp-reduction = 57% (pulp-residue = 43%)

SSF-Process in technical scale at CBP Leuna



- 220 L Reactor
- Agitation: anchor stirrer
- Medium composition:
 - 100 g/L alkaline pulp,
 - 50 FPU/g Cellulose (DM),
 - 7,5 g/L yeast, + inorganic compounds
- Pre-hydrolysis 45°C
- Fermentation $35^{\circ}C$; pH = 4,5 5,5

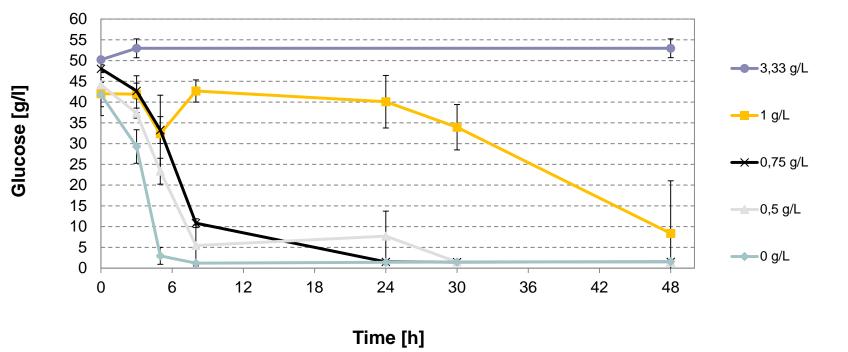
Results:


- ➢ EtOH-max: 3,84 Vol.%
- EtOH-yield: 73,7% (related to cellulose-content in pulp)

Course of the anaerobic fermentation at CBP

- final EtOH-conc. ~ 3.8% (w/v) after 15h
- EtOH-yield = 55% (based on Pulp), =73% (based on Cellulose)
- successful fermentation on technical scale (further optimization necessary)

SIAB

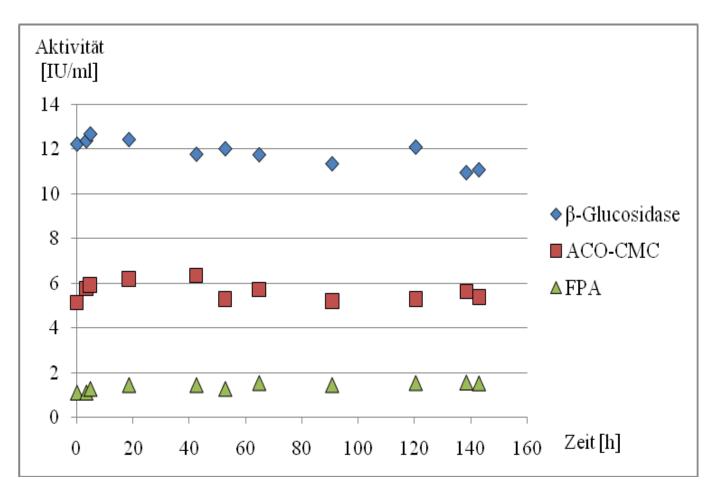


Influence of alkaline lignin on glucose degradation

Influence of lignin on glucose utilization by yeast

Influence of NP-lignin on glucose degradation

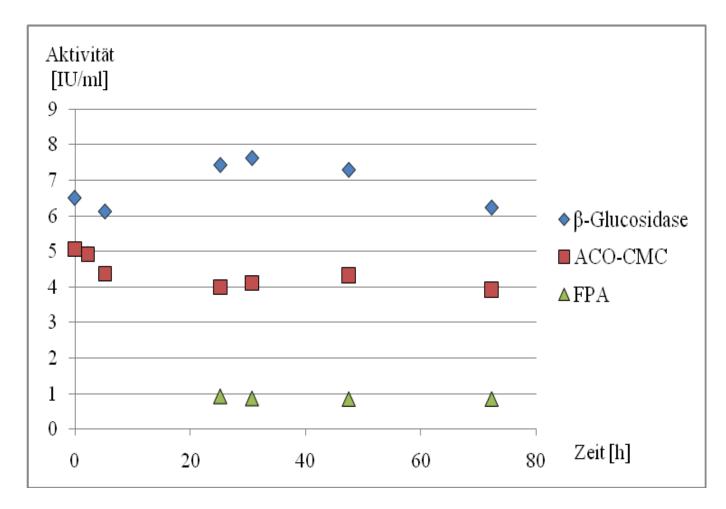
Influence of formic acid on yeast growth


Inhibition of aerobe glucose utilization by formic acid Concentration: 0.5 g/L - 3.33 g/L formic acid

SIAB

Stability of *P. verruculosum* cellulase in the SSF-process

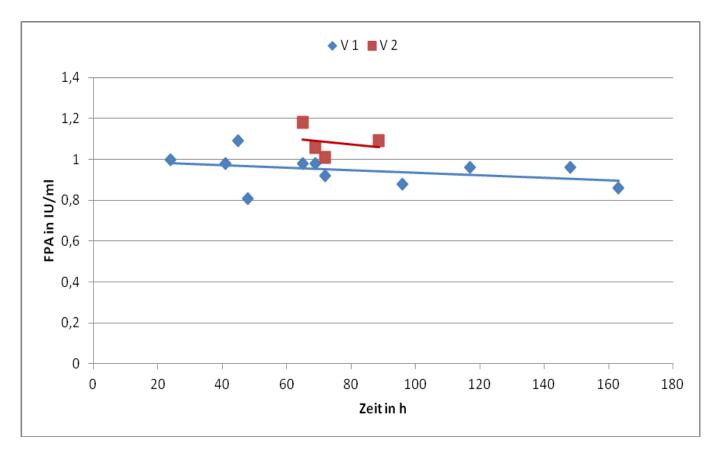
10th Bioethanol and Bioconversion Technology Meeting, Detmold 2014


Cellulase activity in the course of the SSF-process with a-cellulose as substrate

42-L-reactor; P. verruculosum-cellulase, 50 FPU/g DM

SIAB

Cellulase activity in the course of the SSF-process with NP pulp as substrate

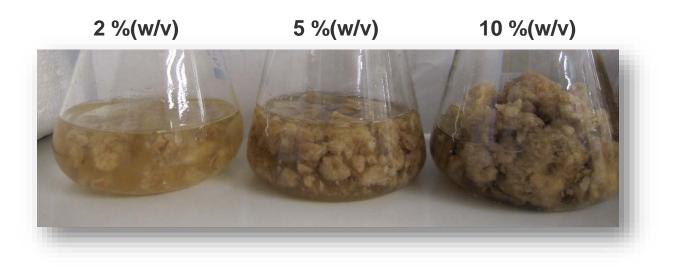


3-L-reactor; P. verruculosum-cellulase, 50 FPU/g DM

SIAB

Cellulase activity in the course of the SSF-process with wheat bran as substrate

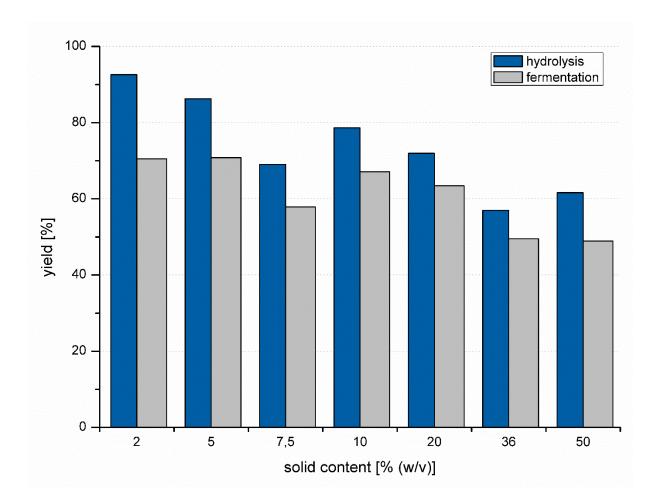
SIAB



42-L-reactor; P. verruculosum-cellulase, 15 FPU/g DM

from Master thesis Manuel Meißner, 2013

Problems to supply the required amount of pulp for > 10% ethanol in the SSF process



In stirred bioreactor max. 7.5 %(w/v) solid concentration

SSF-process at different solid content

from EIB.10.013: Doreen Steffien, FUMT, Freiberg 37

Solid state reactor for high pulp concentration

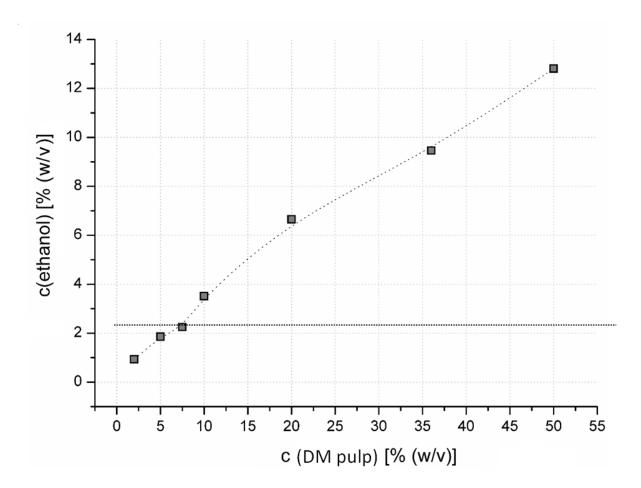
• economical ethanol production:

ethanol conc. >4 %(v/v)

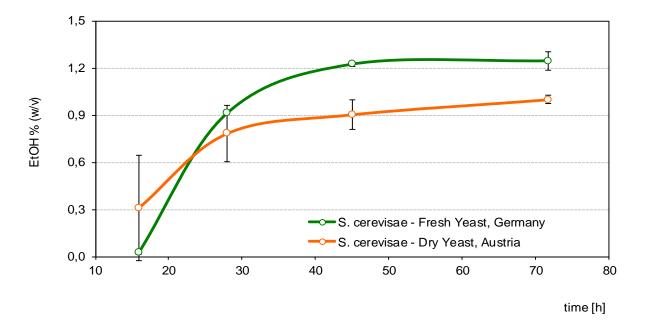
required

→ >10 %(w/v) solid

concentration necessary


 High viscosity → "free-fall-mixing" required → 15 L solid state bioreactor

SSF-process in solid state reactor


High solid content

from EIB.10.013: Doreen Steffien, FUMT, Freiberg

Comparison of different yeast strains

Shake flask culture: 50 g/L MCC, 30 FPU/g DM initial OD₆₀₀=12, Temp.=35°C

Interaction between yeast and enzyme

		t [h]	FPA [IU/mL]
aerob			
	Yeast + enzyme + yeast extract /peptone	144	1,06
	yeast + enzyme	144	0,00
anaero	b		
	yeast + enzyme + yeast extract/peptone	144	0,95
	yeast + enzyme	144	0,00
	yeast + enzyme + stillage	93	0,85

Kluyveromyces marxianus; 37 °C; 90 rpm, pH=5.0, control: 1.0 FPU/mL

from the Diploma thesis: Anne-Catrin Letzel, 2010, FUMT, Freiberg

Results to the SSF-process

Cellulase complex

- The *P. verruculosum*-cellulase complex leads to higher hydrolysis rates in comparison with *T. reesei*
- No or only low inhibition of *P. verruculosum* cellulase by lignin

SSF-Process

- Pulp from NP process generate more ethanol in SSF process than pulp from alkaline pulping
- Stirred bioreactors (CSTR) allow a maximum of about 7.5 %(w/v) pulp, therefore a partial pre-hydrolyses of pulp or feeding in fedbatch-technique must be performed to realize economic concentrations of ethanol
- Yield ethanol / g NP-cellulose > 75% (laboratory conditions)
- Pre-hydrolyses with *P. verruculosum* cellulase improves particularly strong the SSF-process with pulp from Natural Pulping pre-treatment
- Solid state fermenter: 50 %(w/v) pulp \rightarrow max. 12.8 %(w/v) ethanol
- The yeast needs to be optimized for the SSF process

Open questions still to be worked:

Pre-treatment of lignocellulose:

The different pre-treatment processes are economical to compare with respect to the particular application, e.g. pulp for ethanol and lignin for basic chemicals or for composites.

SSF-process:

The provision of the necessary amount of pulp for > 10% ethanol in the SSF-process must be optimized. The possibilities for this are partial prehydrolysis of the pulp, feeding of pulp in fed-batch-technique or fermentation of high pulp concentration in a solid-state-fermenter.

P. verruculosum production strain:

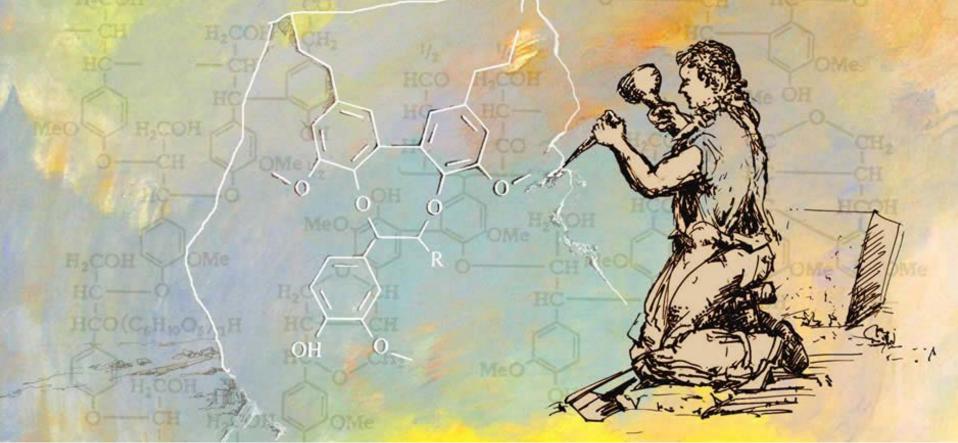
The *P. verruculosum*-enzyme complex is favoured for the SSF-process in "second generation". For industrial scale, the used *P. verruculosum* production strain must be improved, in particular to eliminate the carbon catabolite repression by classical genetic methods. This has the advantage that the strain can be produced in the ethanol plant without the requirements for GMOs.

Partner of the EIB.10.013-Consortium:

(www.era-ib-lignocellulose.eu)

SIAB, UL	SIAB and Leipzig University, Leipzig		
IPWC TECHNISCHE UNIVERSITÄT DRESDEN			
IWPT TECHNISCHE UNIVERSITÄT DRESDEN	Technical University of Dresden		
	Freiberg University of Mining and Technology		
VTT	VTT, Technical research centre of Finland		
LNEG 🔅 LNEG	Laboratório Nacional de Energia e Geologia, Lisbon		
	WUR-FBR, Wageningen, Netherlands		
Biotehnol	Biotehnol, Bucharest, Romania		

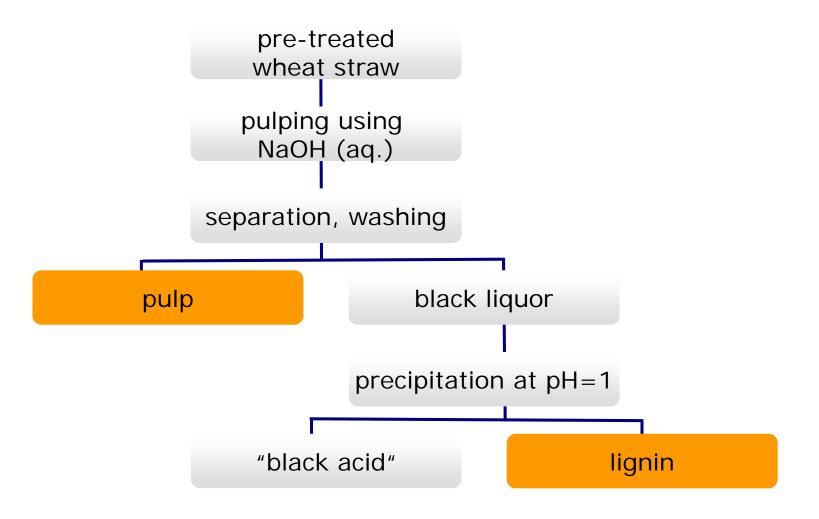
Consortium at project meeting in Bucharest, 2013



10th Bioethanol and Bioconversion Technology Meeting, Detmold 2014

Nihil tam difficile est, quin quaerendo investigari possit

Publius Terentius Afer, named Terenz (* about 195/190 or 185/184 B.C. in Carthage; + 159/158 B.C. in Greece)


Thank you for your attention!

Notes to the presentation

10th Bioethanol and Bioconversion Technology Meeting, Detmold 2014

alkaline pulping of wheat straw

Scale-up of alkaline pre-treatment in CBP Leuna

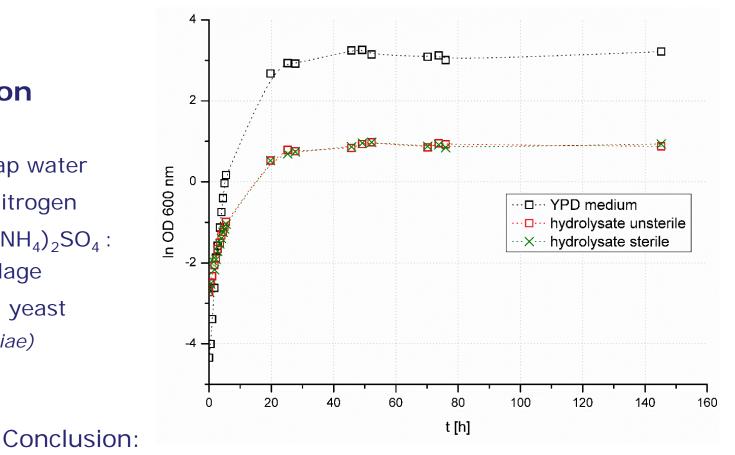
Scale	Sample	Cellulose [%]	Hemi- cellulose [%]	KLASON- Lignin [%]	In/Output [kg atro]	Yield [%]
)-L	Wheat straw	41,9	31,7	21,7	25	
350-L	Pulp	75,2	18,0	6,5	11,5	46,1
	Lignin	-	-	61,7	10,0	25,0
Ļ	Pulp	76,5	12,3	4,3	0,07	55,2
2-1	Lignin	-	-	66,0	0,03	19,3

Comparison of the pre-treatment:

	Alkaline pulping	Natural Pulping
optimal pulping conditions	c _(NaOH) = 3 wt-% T=160 °C t= 30 min	$c_{(HCOOH)} = 60 \%$ T=103-105°C t=40 min after H ₂ O ₂ addition (30 %)
yield of pulp*	ca. 55 % Contains: 2 % Klason-lignin 79 % cellulose 19 % hemicellulose	ca. 45-50 % Contains: 11 % Klason-lignin 83 % cellulose 6 % hemicellulose
yield of lignin precipitation product*	 ca. 20 % contains 70 % Klason-lignin ca. 60 % of original lignin is obtained 	 ca. 10 % ➢ contains 80 % Klason-lignin ➢ ca. 40 % of original lignin is obtained

* in relation to wheat straw

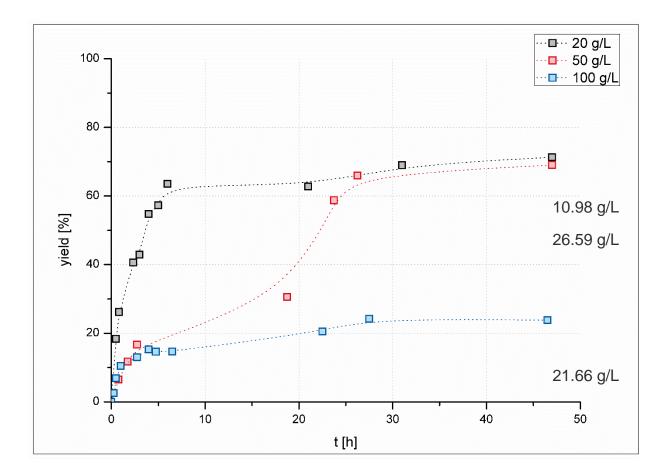
To the SSF-process


10th Bioethanol and Bioconversion Technology Meeting, Detmold 2014

Preliminary tests for SSF-process

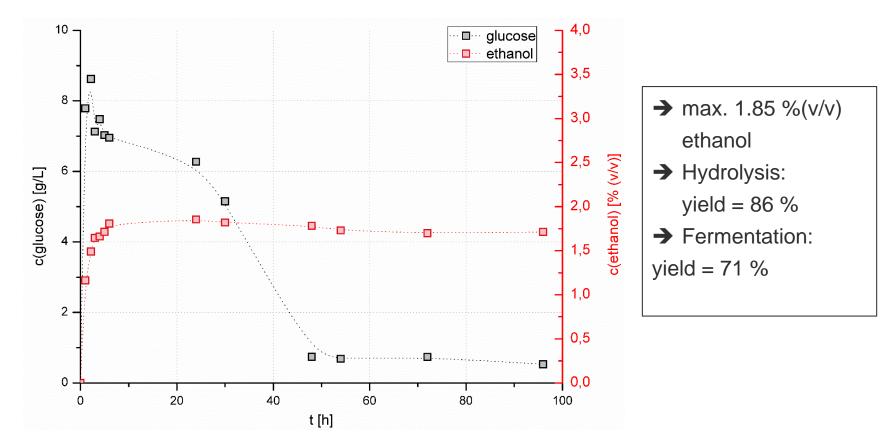
Fermentation

- ➢ 37 °C
- pH 7.0, tap water
- > 200 mg nitrogen
 - ✓ → 1:1 $(NH_4)_2SO_4$: thin stillage
- 3 %(w/v) yeast(S. cerevisiae)



- Yeast grows on hydrolysate,
- no sterilization necessary

Enzymatic hydrolysis with P. verruculosum


• Influence of solid concentration

SSF-process

• 5 %(w/v) solid concentration

TMP-wheat straw

from TU Dresden

Components	percent
Dry matter	97.8
Ash«	2.7
Extract	2.5
Cellulose	49.0
Polyosen	76.4
Hemicellulose	27.4
Lignin	22.8